Abstract

We propose a new method for fabricating hybrid metasurfaces by combining Mie and plasmonic resonances. Our approach involves obtaining an ultrasmooth gold film and separately structuring monocrystalline silicon (c-Si) nanoantenna arrays, which are then wet-transferred and finally immobilized onto the gold film. The experimental and simulation analysis reveals the importance of the native oxide layer of Si and demonstrates fascinating dispersion curves with nanogap resonances and bound states in the continuum. The localized field enhancements in the nanogap cavities result from the coupling between multipolar Mie resonances and their mirror images in the gold film. This effective method improves our understanding of hybrid modes and offers opportunities for developing active metasurfaces, such as depositing c-Si nanoantenna arrays onto stretchable polydimethylsiloxane substrates or electro-optic and piezoelectric sensitive lithium niobate films for potential applications in MEMS, LiDAR, and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call