Abstract

The electrochemical dinitrogen reduction represents an attractive approach of converting N2 and water into ammonia, while the rational design of catalytic active centers remains challenging. Investigating model molecular catalysts with well-tuned catalytic sites should help to develop a clear structure-activity relationship for electrochemical N2 reduction. Herein, we designed several polycyclic aromatic hydrocarbon (PAH) molecules with well-defined positions of boron and nitrogen atoms. Theoretical calculations revealed that the boron atoms possess high local positive charge densities as Lewis acid sites, which are beneficial for N2 adsorption and activation, thus serving as major catalytic active sites for N2 electrochemical reduction. Furthermore, the close vicinity of two boron atoms can further enhance the local positive density and subsequent catalytic activity. Using the PAH molecule with two boron atoms separated by two carbon atoms (B-2C-B), a high NH3 production rate of 34.58 μg·h−1·cm−2 and a corresponding Faradaic efficiency (5.86%) were achieved at −0.7 V versus reversible hydrogen electrode, substantially exceeding the other PAHs with single boron or nitrogen-containing molecular structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.