Abstract
Structural determination of target-bound conformations of peptides is of primary importance for the optimization of peptide ligands and peptide-mimetic design. In the structural determination of weakly binding ligands, transferred nuclear Overhauser effect (TrNOE) methods have been widely used. However, not many distance constraints can be obtained from small peptide ligands by TrNOE, especially for peptides bound to a target molecule in an extended conformation. Therefore, for precise structural determination of weakly binding peptides, additional structural constraints are required. Here, we present a strategy to systematically introduce dihedral angle constraints obtained from multiple transferred cross-correlated relaxation experiments and demonstrate precise structures of weakly binding peptides. As a result, we could determine the bioactive conformations of phage-derived peptide ligands and define their core binding motifs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.