Abstract
Stellar structure and evolution theory is one of the basis in modern astronomy. Stellar inner structures and their evolutionary states can be precisely tested by asteroseismology, since the inner information is brought to the stellar surface by the global oscillating waves and becomes observable. For stellar evolutionary speed (i.e. how long time scale does a star stay at a special evolution phase?), because of the insurmountable gap between the time scales of the evolutionary history of human civilization and a star, it can only be roughly tested by ensemble of stars in different evolutionary stages in most cases, and all the snapshots of these stars make up our global view of stellar evolution. The effect of stellar evolution on the structure and the corresponding global size of a pulsating star will lead to tiny period variations of its pulsation modes, which are the most valuable indicators of its evolutionary state and can be used to test the stellar evolution theory by a single star rather than ensemble of stars. Here, we report a High-Amplitude $\delta$ Scuti star AE Ursae Majoris, who locates in the post main-sequence (MS) evolutionary stage and its observed linear period variation rate can be practically ascribed to its evolutionary effect. The result tests the stellar evolution theory from the pre-MS to post-MS with an unprecedented precision by a single star, and the framework can be extended to other type of pulsating stars to perform precise evolutionary asteroseismology, which aims to test the current stellar evolution theory in different evolutionary stages, discover the discrepancies between the theory and observations, and ultimately build a complete and precise stellar evolution theory to backtrack the history of each of these stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.