Abstract

Emergency load shedding (ELS) is a vital measure for power systems to manage extreme events, ensuring the safety, stability, and economic operation of the grid. The integration of distributed energy resources and controllable devices in modern power systems has bolstered grid flexibility. Consequently, developing precise load shedding strategies to balance economic and security goals has emerged as a prominent subject in power system optimization. However, existing methods exhibit inadequacies, including overlooking practical operability, privacy concerns, and a lack of adaptability to response time requirements. To address these gaps, this paper introduces a precise ELS approach for distributed networks with a focus on response time needs. Contributions encompass designing load shedding processes for various response times, integrating demand response, and partitioning networks for optimized load shedding. Through validation using standard test cases, the proposed approach effectively utilizes response time and demand-side resources for precise ELS control in distribution networks. It accommodates different scenarios, offering a robust solution for rapid and accurate load shedding during emergencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call