Abstract

Poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) is a promising charge-shifting polycation with the capacity to form a range of morphologically distinct polyelectrolyte assemblies. Nevertheless, the basic character of the monomer and its hydrolytic instability impedes its controlled synthesis to higher molecular weight (MW). Herein, the reversible addition-fragmentation chain transfer polymerization of DMAEA is reported using a tert-butanol/V70 initiator/trithiocarbonate-based chain transfer agent (CTA) polymerization setup. The CTA instability is demonstrated in the presence of the unprotonated tertiary amino group of the DMAEA monomer, which limits the control over the conversion and MW of the polymer. In contrast, the shielding of the amino groups by their protonation leads to polymerization with high conversions and excellent control over MWs of polymer up to 100000g mol-1. Hydrolytic degradation study at pH values ranging from 5 to 9 reveals that both basic and protonated PDMAEA undergo a pH-dependent hydrolysis. The proposed polymerization conditions provide a means of synthesizing PDMAEA with well-controlled characteristics, which are beneficial for controlling the complexation processes during the formation of various polyelectrolyte assemblies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.