Abstract
This paper describes a nonlinear Model Predictive Control (MPC) algorithm based on a neural Wiener model. The model is linearised on-line along the predicted trajectory. Thanks to linearisation, the algorithm is computationally efficient since the control policy is calculated on-line from a series of quadratic programming problems. For a nonlinear system for which the linear MPC approach is inefficient and the MPC algorithm with approximate linearisation is inaccurate, it is demonstrated that the described algorithm gives control quality practically the same as the MPC approach with on-line nonlinear optimisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.