Abstract
The introduction of iterative ensemble smoothers (IES) for parameter calibration opens avenues for expanding parameter space in surface water hydrologic modeling. Here, we have introduced independent parameters into a model calibration experiment to estimate errors in rainfall forcing data. This approach has the potential to estimate rainfall errors using other hydrological observations and to improve model calibration. Using high-resolution rain gauge data, we estimated “real” rainfall errors across the Turkey River watershed at storm and daily scales. Tests on synthetic and real-world scenarios successfully estimated errors correlated with observed values – even at daily scales. However, a bias remained from model parameter compensation, and identifying errors was challenging for low precipitation and snowfall. Despite synthetic results showing good error correlation, the biases in parameter identification masked potential improvements in hydrological calibration. This study highlights the potential of IES to provide additional information on rainfall errors, even only using streamflow observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.