Abstract

AbstractGroundwater modelling calls for an effective and robust data integrating method to fill the gap between the model and observation data. The ensemble Kalman filter (EnKF), a real‐time data assimilation method, has been increasingly applied in multiple disciplines such as petroleum engineering and hydrogeology. In this approach, a groundwater model is updated sequentially with measured data such as hydraulic head and concentration. As an alternative to the EnKF, the ensemble smoother (ES) has been proposed for updating groundwater models using all the data together, with much less computational cost. To further improve the performance of the ES, an iterative ES has been proposed for continuously updating the model by assimilating measurements together. In this work, we compare the performance of the EnKF, the ES, and the iterative ES using a synthetic example in groundwater modelling. Hydraulic head data modelled on the basis of the reference conductivity field are used to inversely estimate conductivities at unsampled locations. Results are evaluated in terms of the characterization of conductivity and groundwater flow predictions. It is concluded that (a) the iterative ES works better than the standard ES because of its continuous updating and (b) the iterative ES could achieve results comparable with those of the EnKF, with less computational cost. These findings show that the iterative ES should be paid much more attention for data assimilation in groundwater modelling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.