Abstract

In this paper we present a model of the discharge of a lithium–oxygen battery with aqueous electrolyte. Lithium–oxygen batteries (Li–O2) have recently received great attention due to their large theoretical specific energy. Advantages of the aqueous design include the stability of the electrolyte, the long experience with gas diffusion electrodes (GDEs), and the solubility of the reaction product lithium hydroxide. However, competitive specific energies can only be obtained if the product is allowed to precipitate. Here we present a dynamic one-dimensional model of a Li–O2 battery including a GDE and precipitation of lithium hydroxide. The model is parameterized using experimental data from the literature. We demonstrate that GDEs remove power limitations due to slow oxygen transport in solutions and that lithium hydroxide tends to precipitate on the anode side. We discuss the system architecture to engineer where nucleation and growth predominantly occurs and to optimize for discharge capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.