Abstract

Sand rice (Agriophyllum squarrosum) is widely distributed on dunes in the Asian interior arid zone, and its large intraspecific trait variation makes it a very good model for investigating the ecological processes underlying its adaptation to the desert environment. In this study, seed size variation across 68 natural populations was used to establish geographic patterns and to quantify the effects of the climate, soil, and collection-year weather variables. The length of the seed major axis and thousand seed weight (TSW) both showed significant longitudinal patterns. Long-term climate variables accounted for most of the explained variances for seed major axis (57.20%) and TSW (91.54%). Specifically, annual precipitation and minimum monthly precipitation had the most significantly positive and negative effects, indicating that longitudinal clines are driven by a precipitation gradient across the species' distribution range. A substantial unique effect of soil variables (27.27%) was found for seed major axis variation, but only 3.64% of TSW variation was explained by soil variables. Two extreme groups were selected to evaluate the genetic and plastic effects on seed size in a common garden experiment. Large-seeded individuals were more competitive in semi-arid regions, and had stronger adaptive plasticity as well as better performance in early seedling establishment, and hence they have potential for use in future domestication projects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.