Abstract

Aims Preserving and restoring Tamarix ramosissima is urgently required in the Tarim Basin, Northwest China. Using species distribution models to predict the biogeographical distribution of species is regularly used in conservation and other management activities. However, the uncertainty in the data and models inevitably reduces their prediction power. The major purpose of this study is to assess the impacts of predictor variables and species distribution models on simulating T. ramosissima distribution, to explore the relationships between predictor variables and species distribution models and to model the potential distribution of T. ramosissima in this basin. Methods Three models—the generalized linear model (GLM), classification and regression tree (CART) and Random Forests—were selected and were processed on the BIOMOD platform. The presence/absence data of T. ramosissima in the Tarim Basin, which were calculated from vegetation maps, were used as response variables. Climate, soil and digital elevation model (DEM) data variables were divided into four datasets and then used as predictors. The four datasets were (i) climate variables, (ii) soil, climate and DEM variables, (iii) principal component analysis (PCA)-based climate variables and (iv) PCA-based soil, climate and DEM variables. Important Findings The results indicate that predictive variables for species distribution models should be chosen carefully, because too many predictors can reduce the prediction power. The effectiveness of using PCA to reduce the correlation among predictors and enhance the modelling power depends on the chosen predictor variables and models. Our results implied that it is better to reduce the correlating predictors before model processing. The Random Forests model was more precise than the GLM and CART models. The best model for T. ramosissima was the Random Forests model with climate predictors alone. Soil variables considered in this study could not significantly improve the model’s prediction accuracy for T. ramosissima. The potential distribution area of T. ramosissima in the Tarim Basin is ;3.57 3 10 4 km 2 , which has the potential to mitigate global warming and produce bioenergy through restoring T. ramosissima in the Tarim Basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.