Abstract
We generalize the classical two-body problem from flat space to spherical space and realize much of the complexity of the classical three-body problem with only two bodies. We show analytically, by perturbation theory, that small, nearly circular orbits of identical particles in a spherical universe precess at rates proportional to the square root of their initial separations and inversely proportional to the square of the universe's radius. We show computationally, by graphically displaying the outcomes of large open sets of initial conditions, that large orbits can exhibit extreme sensitivity to initial conditions, the signature of chaos. Although the spherical curvature causes nearby geodesics to converge, the compact space enables infinitely many close encounters, which is the mechanism of the chaos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.