Abstract
Chaotic behaviour is ubiquitous and plays an important part in most fields of science. In classical physics, chaos is characterized by hypersensitivity of the time evolution of a system to initial conditions. Quantum mechanics does not permit a similar definition owing in part to the uncertainty principle, and in part to the Schrödinger equation, which preserves the overlap between quantum states. This fundamental disconnect poses a challenge to quantum-classical correspondence, and has motivated a long-standing search for quantum signatures of classical chaos. Here we present the experimental realization of a common paradigm for quantum chaos-the quantum kicked top- and the observation directly in quantum phase space of dynamics that have a chaotic classical counterpart. Our system is based on the combined electronic and nuclear spin of a single atom and is therefore deep in the quantum regime; nevertheless, we find good correspondence between the quantum dynamics and classical phase space structures. Because chaos is inherently a dynamical phenomenon, special significance attaches to dynamical signatures such as sensitivity to perturbation or the generation of entropy and entanglement, for which only indirect evidence has been available. We observe clear differences in the sensitivity to perturbation in chaotic versus regular, non-chaotic regimes, and present experimental evidence for dynamical entanglement as a signature of chaos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.