Abstract

The early Earth, devoid of the protective stratospheric ozone layer, must have sustained an ambient prebiotic physicochemical medium intensified by the co-existence of shortwave UV photons and very low energy electrons (vLEEs). Consequently, only intrinsically stable molecules against these two co-existing molecular destructors must have proliferated and thereby chemically evolved into the advanced molecules of life. Based on this view, we examined the stability inherent in nucleobases and their complementary pairs as resistance to the molecular damaging effects of shortwave UV photons and vLEEs. This leads to the conclusion that nucleobases could only proliferated as their complementary pairs under the unfavorable prebiotic conditions on early Earth. The complementary base pairing not only enhances but consolidates the intrinsic stability of nucleobases against short-range UV photons, vLEEs, and possibly many as-yet-unknown deleterious agents co-existed in the prebiotic conditions of the early Earth. In short, complementary base pairing is a manifestation of chemical evolution in the unfavorable prebiotic medium created by the absence of the stratospheric ozone layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call