Abstract
Diamondoids are a class of organic molecules with the carbon skeletons isostructural to nano-diamond, and have been shown to be promising precursors for diamond formation. In this work, the formation of diamond crystals from various diamondoid molecule building blocks was studied using our developed molecular geometry specific Monte Carlo method. We maintained the internal carbon skeletons of the diamondoid molecules, and investigated how the carbon-carbon bonds form between diamondoid molecules and how efficient the process is to form diamond crystals. The simulations show that higher diamondoid molecules can produce structures closer to a diamond crystal compared with lower diamondoid molecules. Specifically, using higher diamondoid molecules, larger bulk diamond crystals are formed with fewer vacancies. The higher propensity of certain diamondoids to form diamond crystals reveals insights into the microscopic processes of diamond formation under high-pressure high-temperature conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.