Abstract
Kaczmarz method is one popular iterative method for solving inverse problems, especially in computed tomography. Recently, it was established that a randomized version of the method enjoys an exponential convergence for well-posed problems, and the convergence rate is determined by a variant of the condition number. In this work, we analyze the preasymptotic convergence behavior of the randomized Kaczmarz method, and show that the low-frequency error (with respect to the right singular vectors) decays faster during first iterations than the high-frequency error. Under the assumption that the initial error is smooth (e.g. sourcewise representation), the result explains the fast empirical convergence behavior, thereby shedding new insights into the excellent performance of the randomized Kaczmarz method in practice. Further, we propose a simple strategy to stabilize the asymptotic convergence of the iteration by means of variance reduction. We provide extensive numerical experiments to confirm the analysis and to elucidate the behavior of the algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.