Abstract

Auditory-motor interactions can support the preparation for expected sensory input. We investigated the periodic modulation of beta activity in the electroencephalogram to assess the role of active auditory-motor synchronization. Pre-stimulus beta activity (13-30 Hz) has been interpreted as a neural signature of the preparation for expected sensory input. In the current study, participants silently counted frequency deviants in sequences of pure tones either during a physically inactive control condition or while pedaling on a cycling ergometer. Tones were presented either rhythmically (at 1 Hz) or arrhythmically with variable intervals. In addition to the pedaling conditions with rhythmic (auditory-motor synchronization, AMS) or arrhythmic stimulation, a self-generated stimulus condition was used in which tones were presented in sync with the participants' spontaneous pedaling. This condition served to explore whether sensory predictions are driven primarily by the auditory or by the motor system. Pre-stimulus beta power increased for rhythmic compared to arrhythmic stimulus presentation in both sitting and pedaling conditions but was strongest in the AMS condition. Furthermore, beta power in the AMS condition correlated with motor performance, i.e., the better participants synchronized with the rhythmic stimulus sequence, the higher was pre-stimulus beta power. Additionally, beta power was increased for the self-generated stimulus condition compared with arrhythmic pedaling, but there was no difference between the self-generated and the AMS condition. The current data pattern indicates that pre-stimulus beta power is not limited to neuronal entrainment (i.e., periodic stimulus presentation) but represents a more general correlate of temporal anticipation. Its association with the precision of AMS supports the role of active behavior for auditory predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.