Abstract

Whereas there is a slight information on the pre-saddle neutron emission rate and neutron multiplicity, as well as it is impossible to separate the pre-saddle and saddle to scission neutron contributions experimentally, the theoretical studies of pre-saddle neutron emission rate and neutron multiplicity are of great importance. In the present work, the calculations of pre-saddle neutron multiplicity are performed using the analysis of fission fragment angular anisotropy data for [Formula: see text] and [Formula: see text] reaction systems. The obtained results show that the pre-saddle neutron multiplicity decreases by increasing the initial excitation energy and it has found to be characterized by a nonlinear behavior. Through the analysis of pre-saddle neutron multiplicity and pre-saddle transition time by means of the neutron clock method, the pre-saddle neutron emission rate is calculated for the first time. The findings of this study show that the pre-scission neutron emission rate is lower than the pre-saddle neutron emission rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call