Abstract
The risks to wildlife and humans from uranium (U) mining in the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This study characterizes the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathology in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine. Gross alpha levels were below the reporting limit (4 pCi/g) in all samples, and gross beta levels were indicative of background in vegetation (<10-17 pCi/g) and rodents (<10-43.5 pCi/g). Concentrations of U, Tl, Pb, Ni, Cu, and As in vegetation downwind from the mine were likely the result of aeolian transport. Chemical concentrations in rodents and terrestrial invertebrates indicate that surface disturbance during mine construction has not resulted in statistically significant spatial differences in fauna concentrations adjacent to the mine. Chemical concentrations in egg contents and nestlings of non-aquatic birds were less than method quantification limits or did not exceed toxicity thresholds. Bioaccumulation of As, Pb, Se, Tl, and U was evident in Western spadefoot (Spea multiplicata) tadpoles from the mine containment pond; concentrations of As (28.9-31.4μg/g) and Se (5.81-7.20μg/g) exceeded toxicity values and were significantly greater than in tadpoles from a nearby water source. Continued evaluation of As and Se in biota inhabiting and forging in the mine containment pond is warranted as mining progresses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have