Abstract

This paper presents the prelaunch radiometric calibration of the Ozone Monitor Suite-Nadir (OMS-N) instrument, a vital payload on the FY-3F satellite. FY-3F achieved a successful launch on 3 August 2023. The radiance calibration of the OMS-N instrument was achieved using an integrating sphere, with known exit radiance ascertained through a transferring radiometer. The calibration model incorporates six energy levels. The Solar Simulator Standard System was employed to validate the calibration results, selecting specific rows to represent varying spatial dimensions. Considering the influence of xenon lamp characteristic peaks and transmission errors during the calibration process, the average deviation remained within 2.3% for the VIS channel, 3% for the UV1 channel, and 2.2% for the UV2 channel. Furthermore, the uncertainty of the radiometric calibration was analyzed. The results indicated an absolute uncertainty of 2.33% for both the UV1 and UV2 channels and 1.69% for the VIS channel. The relative uncertainty was 1.84% for both the UV1 and UV2 channels and 1.45% for the VIS channel. The obtained calibration coefficients are accurate and reliable and can be used for the inversion of product parameters, which is of great significance to the quantitative application of satellite data and the advancement of scientific research on quantitative remote sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.