Abstract

In this study, neutron-emission spectra produced by (n,xn) reactions on nuclei 232 Th have been calculated. Angle-integrated cross-sections in neutron induced reactions on targets 232 Th have been calculated at the bombarding energies from 2 MeV to 18 MeV. We have investigated multiple pre-equilibrium matrix element constant from internal transition for 232 Th (n,xn) neutron emission spectra. In the calculations, the geometry dependent hybrid model and the cascade exciton model including the effects of pre-equilibrium have been used. Pre-equilibrium direct effects have been examined by using full exciton model. In addition, we have described how multiple pre-equilibrium emissions can be included in the Feshbach–Kerman–Koonin (FKK) fully quantum-mechanical theory. By analyzing (n,xn) reaction on 232 Th , with the incident energy from 2 MeV to 18 MeV, the importance of multiple pre-equilibrium emission can be seen clearly. All calculated results have been compared with experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.