Abstract

The 2011 Tohoku-oki earthquake caused large eastward displacement and subsidence along the Pacific coast of northeastern Japan. This earthquake partly solved a well-known paradox holding that sense and rate of deformation differ greatly between geologic and geodetic estimates. A paradox remains, however, in explaining long-term uplift along the Pacific coast on a geologic time-scale. Geodetic data show that coastal subsidence continued at a nearly constant rate of ∼5 mm/yr with small fluctuations associated with M7-8 interplate earthquakes for ∼120 years before the Tohoku-oki earthquake. In an area near the Oshika Peninsula where coseismic subsidence is largest, extrapolation of a logarithmic function fitting observed postseismic deformation suggests that coseismic subsidence may be compensated for by the postseismic uplift for several decades but it is difficult to expect the postseismic uplift exceeding 2 meters, so it is implausible that the observed rapid subsidence continued throughout an entire interseismic period in a great megathrust earthquake cycle. We propose a hypothetical model in which the sense of vertical deformation changes from uplift to subsidence during the interseismic period. Using simple elastic dislocation theory, this model is explained by the shallow coupled part of a plate interface in an early interseismic period and the deep coupled part of a late interseismic period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.