Abstract

This study presents a pre-calculated duty cycle optimization method based on the genetic algorithm for a non-inverting buck-boost converter (NIBBC). In this method, the duty cycles are calculated via a discrete model estimation of NIBBC. Despite its high computational time requirements, this method can find solutions to problems that other methods cannot overcome due to their lack of linearity, continuity, or other features. This algorithm is developed using the TMS320F28335 digital signal processor, which is a 32-bit floating point processor operating at 150 MHz. The robustness and stability of this method at varying input voltages, loads, and parameters are then analyzed following the IEEE and IEC standards. The experimental results verify the simulation results and highlight the efficiency, power quality, wide output voltage range, and stability of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.