Abstract

Modern electronics not only require the thermal management ability of polymer packaging materials but also need anti-voltage and mechanical properties. Boron nitride nanosheets (BNNS), an ideal thermally conductive and high withstand voltage (800 kV/mm) filler, can meet application needs, but the complex and low-yield process limits their large-scale fabrication. Herein, in this work, we prepare sucrose-assisted ball-milled BN(SABM-BN)/polyetherimide (PEI) composite films by a casting-hot pressing method. SABM-BN, as a pre-ball-milled filler, contains BNNS and BN thick sheets. We mainly investigated the thermal conductivity (TC), breakdown strength, and mechanical properties of composites. After pre-ball milling, the in-plane TC of the composite film is reduced. It decreases from 2.69 to 2.31 W/mK for BN/PEI composite film at 30 wt% content; however, the through-plane TC of composites is improved, and the breakdown strength and tensile strength of the composite film reach the maximum of 54.6 kV/mm and 102.7 MPa at 5 wt% content, respectively. Moreover, the composite film is used as a flexible circuit substrate, and the working surface temperature is 20 ℃, which is lower than that of pure PEI film. This study provides an effective strategy for polymer composites for electronic packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.