Abstract
BackgroundMalaria is receding in many endemic countries with intervention scale -up against the disease. However, this resilient scourge may persist in low-grade submicroscopic infections among semi-immune members of the population, and be poised for possible resurgence, creating challenges for detection and assessment of intervention impact. Parasite genotyping methods, such as the molecular barcode, can identify specific malaria parasite types being transmitted and allow tracking and evaluation of parasite population structure changes as interventions are applied. This current study demonstrates application of pre-amplification methods for successful detection and genotyping of residual Plasmodium falciparum infections during a dramatic malarial decline.MethodsThe study was a prospective cross-sectional design and based on a 2,000 sq km vicinity of Macha Mission Hospital in southern Zambia. Willing and predominantly asymptomatic residents of all ages were screened for malaria by microscopy during the 2005 and 2008 transmission seasons, with simultaneous collection of dried blood spots (DBS) on filter paper, and extraction of Plasmodium falciparum DNA was performed. Plasmodium falciparum infections were genotyped using a 24 SNP-based molecular barcode assay using real-time PCR. Submicroscopic parasitaemia samples were subjected to pre-amplification using TaqMan PreAmp Master Mix following the manufacturer’s instructions before SNP barcode analysis.ResultsThere was a dramatic decline of malaria between 2005 and 2008, and the geometric mean parasite density (95% CI) fell from 704/μL (390–1,271) in 2005 to 39/μL (23–68) in 2008, culminating in a large proportion of submicroscopic infections of which 90% failed to yield ample DNA for standard molecular characterization among 2008 samples. Pre-amplification enabled successful detection and genotyping of 74% of these low-grade reservoir infections, overall, compared to 54% that were detectable before pre-amplification (p <0.0005, n = 84). Furthermore, nine samples negative for parasites by microscopy and standard quantitative PCR amplification were positive after pre-amplification.ConclusionsPre-amplification allows analysis of an otherwise undetectable parasite population and may be instrumental for parasites identification, tracking and assessing the impact of interventions on parasite populations during malaria control and elimination programmes when parasitaemia is expected to decline to submicroscopic levels.
Highlights
Malaria is receding in many endemic countries with intervention scale -up against the disease
Through support from the WHO Global Fund Rollback Malaria (RBM) programme, the President’s Malaria Initiative (PMI), Malaria Control and Evaluation Partnership (MACEPA) and other public-private partnerships, endemic countries are scaling up effective interventions against malaria [1,2,3,4]
Plasmodium falciparum Deoxyribo nucleic acid (DNA) yields from field samples with and without pre-amplification With declining parasite densities between 2005 and 2008, an increasing proportion of samples could not be directly genotyped after extraction since yields of P. falciparum DNA concentrations fell below the 0.005 ng/uL threshold [6] for reliable barcode assay analysis (Table 2)
Summary
Malaria is receding in many endemic countries with intervention scale -up against the disease This resilient scourge may persist in low-grade submicroscopic infections among semi-immune members of the population, and be poised for possible resurgence, creating challenges for detection and assessment of intervention impact. Parasite genotyping methods, such as the molecular barcode, can identify specific malaria parasite types being transmitted and allow tracking and evaluation of parasite population structure changes as interventions are applied. The present study applies a pre-amplification technique and demonstrates its utility for enhanced molecular detection and tracking of recalcitrant Plasmodium falciparum populations during scaled up interventions
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have