Abstract

Mammalian target of rapamycin (mTOR) functions in two distinct signaling complexes, mTORC1 and mTORC2. In response to insulin and nutrients, mTORC1, consisting of mTOR, raptor (regulatory-associated protein of mTOR), and mLST8, is activated and phosphorylates eukaryotic initiation factor 4E-binding protein (4EBP) and p70 S6 kinase to promote protein synthesis and cell size. Previously we found that activation of mTOR kinase in response to insulin was associated with increased 4EBP1 binding to raptor. Here we identify prolinerich Akt substrate 40 (PRAS40) as a binding partner for mTORC1. A putative TOR signaling motif, FVMDE, is identified in PRAS40 and shown to be required for interaction with raptor. Insulin stimulation markedly decreases the level of PRAS40 bound by mTORC1. Recombinant PRAS40 inhibits mTORC1 kinase activity in vivo and in vitro, and this inhibition depends on PRAS40 association with raptor. Furthermore, decreasing PRAS40 expression by short hairpin RNA enhances 4E-BP1 binding to raptor, and recombinant PRAS40 competes with 4E-BP1 binding to raptor. We, therefore, propose that PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.