Abstract

AbstractCalibration of distributed parameter groundwater models in the Bayesian framework using Markov-chain Monte Carlo (MCMC) random sampling is often hampered by the large number of simulations required to make reliable uncertainty estimates. In particular, naive application of the ubiquitous random walk metropolis Hastings (MH) algorithm can take an unsatisfactorily long time to draw samples from the posterior distribution and hence make the required uncertainty estimates. This note addresses the issue of obtaining feasible uncertainty estimates using accelerated MCMC. A pragmatic approach is investigated, based on the adaptive delayed acceptance MH algorithms of Cui et al. First, adoption of an appropriate prior model over the parameters indicates that the number of estimated parameters can be reduced from a over a thousand parameters to several tens without essential loss of information. Secondly, the algorithm is initialized by a least squares [maximum a posteriori (MAP)] estimate and the covarianc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.