Abstract

The object of investigations is a system of impulsive differential equations with “supremum.” These equations are not widely studied yet, and at the same time they are adequate mathematical model of many real world processes in which the present state depends significantly on its maximal value on a past time interval. Practical stability for a nonlinear system of impulsive differential equations with “supremum” is defined and studied. It is applied Razumikhin method with piecewise continuous scalar Lyapunov functions and comparison results for scalar impulsive differential equations. To unify a variety of stability concepts and to offer a general framework for the investigation of the stability theory, the notion of stability in terms of two measures has been applied to both the given system and the comparison scalar equation. An example illustrates the usefulness of the obtained sufficient conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.