Abstract
Spread spectrum pulse compression is a signal processing algorithm that enhances critical system performance parameters such as signal-to-noise ratio, peak power requirements, minimum detectable signal, and total dynamic range. For this research, a digital, real-time, Barker coded, bi-phase modulator was designed and constructed, as well as a simple ultrasonic test tank containing both synthetic targets and excised goat's liver. Upon reception and demodulation of the spread spectrum ultrasonic echo, cross-correlation with a sidelobe suppression filter was performed. Due to limitations such as narrow bandwidth, and very short minimum ranges, a practical ultrasonic pulse compression system must be restricted to short code lengths. For 13 bit Barker code compression, the expected increase in signal-to-noise ratio of 11 dB was realized; at the same time greater than 30 dB of instantaneous dynamic range was maintained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.