Abstract

The slip circle method of slices is commonly used in the analyses of slope stability and bearing capacity for multi-layered ground. However, in the case of ground consisting of horizontal sandy layer, it is known that modified Fellenius׳ method tends to underestimate the factor of safety, while simplified Bishop׳s method tends to overestimate the factor of safety. In this study, a new slip circle method was proposed for the purpose of improving the accuracy of the analysis for a ground consisting of sand and clay layers. In the proposed method, β of the ratio of inter-slice shear force to inter-slice normal force i.e tan(βαi) is assumed constant as 0.25 for all slices. This is named as circle bearing capacity factor (CBCF) method. It was found that the bearing capacity factors, Nc, Nq, and Nγ calculated for shallow foundation on horizontal ground from CBCF method agreed well with that obtained from the plastic solution. The back-analyses carried out for a few case studies on the stability of slopes on earth structures found in sand and clay layers showed that the factor of safety calculated from CBCF method explains the actual performance of earth structures well. The proposed CBCF method proves it reliability in calculating bearing capacity for shallow foundations. This was achieved from the results obtained from centrifugal model test, which were carried out for dense sand layer overlying soft clay with various conditions by Okamura et al. (1998). It was examined that the factor of safety calculated for the stability of slopes from CBCF method can explain the actual performance of geotechnical structures constructed on ground consisting of sand and clay layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call