Abstract

Real-time hazard mitigation we have developed using earthquake early warning (EEW) (1) enhances seismic intensity estimation accuracy and (2) extends the interval between when an EEW is issued and when strong tremors arrive. We accomplished the first point (enhancing seismic intensity estimation) by reducing estimation error to less than that commonly used based on an attenuation relationship and soil amplification factor by considering source-location and wave propagation path differences based on site-specific empiricism. We accomplished the second point (shortening the time between warnings and when tremors arrive) using a high-speed, reliable communication network for receiving EEW information from the Japan Meteorological Agency (JMA) and quickly transmitting warning signals to users. In areas close to quake epicenters, however, warnings may not arrive before the arrival of strong ground motions. The on-site warning system we developed uses P-wave pickup sensors that detect P-wave arrival at a site and predict seismic intensity of subsequent S-waves. We confirmed the on-site warning prototype’s feasibility based on numerical simulation and observation. We also developed an integration server for combining on-site warnings with JMA information to be applied to earthquakes over a wide range of distances. We installed a practical prototype at a construction site near the 2008 Iwate-Miyagi Inland Earthquake epicenter to measure its aftershocks because JMA EEW information was too late to use against the main shock. We obtained good aftershock results, confirming the prototype’s applicability and accuracy. Integration server combination logic was developed for manufacturing sites requiring highly robust, reliable control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call