Abstract

How to remove local oscillator (LO) side channel attacks has been a notoriously hard problem in continuous-variable quantum key distribution (CV-QKD). In the self-referenced CV-QKD schemes, the LO signal is locally generated at the receiver by an independent laser so that it is not co-transmitted with the quantum signal. This simple solution removes all LO side channels. However it also introduces some other practical vulnerabilities. Especially the polarization states of the quantum signal and LO signal may not be identical across the detector because of the presence of the polarization aberrations. Thus, the detection efficiency which is arguably the most critical experiment parameter of the practical implementation will be impaired. In this paper, we analyze the impact of polarization aberrations on the detection efficiency for CV-QKD and propose a self-referenced CV-QKD scheme in the presence of polarization aberrations by using an off-axis optical system. In the proposed scheme, the polarization states of the quantum signal would change with the off-axis optical system, thus impairing the heterodyne efficiency. Our security analysis shows a gap between the theory and practice of CV-QKD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.