Abstract

Heterodyne efficiency is referred as a measure of the quality for the coherent laser communication. The heterodyne efficiency not only reflects the matching of phase and amplitude between the received signal and the local oscillator, but also reveals the polarization matching between the two beams. Different from the common heterodyne efficiency, a revised heterodyne efficiency is proposed by considering the polarization aberrations of optical system. Based on the Polar and Pauli-Zernike decomposition algorithms, the effects of polarization aberrations on the output polarization states are analyzed and shown graphically. The variations of the heterodyne efficiency are investigated by including the separate component of polarization aberrations in mixing of two perfectly matched Gaussian beams. Depending on the modified heterodyne efficiency, an off-axis optical system with a periscopic scanner is modeled and used to discuss the variations of the heterodyne efficiency. A further investigation for three different coatings is accomplished to verify the effects the varied polarization aberrations have on the heterodyne efficiency. The analysis indicates that the modified heterodyne efficiency not only can provide a comprehensive description of the coherent detection system, but also can be used to evaluate and minimize the polarization aberrations of optical system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call