Abstract

This study details a series of conditions that may be applied to ensure 'safe' incorporation of cysteine with minimal racemization during automated or manual solid-phase peptide synthesis. Earlier studies from our laboratories [Han et al. (1997) J. Org. Chem. 62, 4307-4312] showed that several common coupling methods, including those exploiting in situ activating agents such as N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide (HATU), N-[1H-benzotriazol-1-yl)-(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphate N-oxide (HBTU), and (benzotriazol-1-yl-N-oxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) [all in the presence of N-methylmorpholine (NMM) or N,N-diisopropylethylamine (DIEA) as a tertiary amine base], give rise to unacceptable levels (i.e. 5-33%) of cysteine racemization. As demonstrated on the tripeptide model H-Gly-Cys-Phe-NH(2), and on the nonapeptide dihydrooxytocin, the following methods are recommended: O-pentafluorophenyl (O-Pfp) ester in DMF; O-Pfp ester/1-hydroxybenzotriazole (HOBt) in DMF; N,N'-diisopropylcarbodiimide (DIPCDI)/HOBt in DMF; HBTU/HOBt/2,4,6-trimethylpyridine (TMP) in DMF (preactivation time 3.5-7.0 min in all of these cases); and HBTU/HOBt/TMP in CH(2)Cl(2)/DMF (1:1) with no preactivation. In fact, several of the aforementioned methods are now used routinely in our laboratory during the automated synthesis of analogs of the 58-residue protein bovine pancreatic trypsin inhibitor (BPTI). In addition, several highly hindered bases such as 2,6-dimethylpyridine (lutidine), 2,3,5,6-tetramethylpyridine (TEMP), octahydroacridine (OHA), and 2,6-di-tert-butyl-4-(dimethylamino)pyridine (DB[DMAP]) may be used in place of the usual DIEA or NMM to minimize cysteine racemization even with the in situ coupling protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.