Abstract

The accurate design of spur gear drive has a tremendous impact on size, weight, transmission and machine performance. Also, the demand for lighter gears is high in power transmission systems, as they save material and energy. Hence this paper presents an enhanced method to solve a two stage spur gear optimization problem. It consists of a mathematical model with a nonlinear objective function and 11 constraints. A two stage spur gear is considered. To obtain minimum volume of spur gear drive is objective of the problem. The considered design variables are: Module, number of teeth, base width of the gears and, shaft diameter and power. Besides considering regular mechanical constraints based on American Gear Manufacturers Association (AGMA) requisites, six more additional critical constraints on contact ratio, load carrying capacity, power loss, root not cut, no involute interference and line of action are imposed on the drive. Nature inspired optimization algorithms, namely, Simulated Annealing (SA), Firefly (FA) and MATLAB solver fmincon are used to find solution in MATLAB environment. Simulation results are analyzed, compared with literature and validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.