Abstract

In mobile communication, spatial queries pose a serious threat to user location privacy because the location of a query may reveal sensitive information about the mobile user. In this paper, we study k nearest neighbor (kNN) queries where the mobile user queries the location-based service (LBS) provider about k nearest points of interest (POIs) on the basis of his current location. We propose a solution for the mobile user to preserve his location privacy in kNN queries. The proposed solution is built on the Paillier public-key cryptosystem and can provide both location privacy and data privacy. In particular, our solution allows the mobile user to retrieve one type of POIs, for example, k nearest car parks, without revealing to the LBS provider what type of points is retrieved. For a cloaking region with n×n cells and m types of points, the total communication complexity for the mobile user to retrieve a type of k nearest POIs is O(n+m) while the computation complexities of the mobile user and the LBS provider are O(n + m) and O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> m), respectively. Compared with existing solutions for kNN queries with location privacy, our solutions are more efficient. Experiments have shown that our solutions are practical for kNN queries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.