Abstract

ABSTRACTWe present a unified view of likelihood based Gaussian progress regression for simulation experiments exhibiting input-dependent noise. Replication plays an important role in that context, however previous methods leveraging replicates have either ignored the computational savings that come from such design, or have short-cut full likelihood-based inference to remain tractable. Starting with homoscedastic processes, we show how multiple applications of a well-known Woodbury identity facilitate inference for all parameters under the likelihood (without approximation), bypassing the typical full-data sized calculations. We then borrow a latent-variable idea from machine learning to address heteroscedasticity, adapting it to work within the same thrifty inferential framework, thereby simultaneously leveraging the computational and statistical efficiency of designs with replication. The result is an inferential scheme that can be characterized as single objective function, complete with closed form derivatives, for rapid library-based optimization. Illustrations are provided, including real-world simulation experiments from manufacturing and the management of epidemics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call