Abstract

Active noise cancellation has become a prominent feature in contemporary in-ear personal audio devices. However, due to constraints related to component arrangement, power consumption, and manufacturing costs, most commercial products utilize fixed-type controller systems as the basis for their active noise control algorithms. These systems offer robust performance and a straightforward structure, which is achievable with cost-effective digital signal processors. Nonetheless, a major drawback of fixed-type controllers is their inability to adapt to changes in acoustic transfer paths, such as variations in earpiece fitting conditions. Therefore, adaptive-type active noise control systems that employ adaptive digital filters are considered as the alternative. To address the increasing system complexity, design concepts and implementation strategies are discussed with respect to actual hardware limitations. To illustrate these considerations, a case study showcasing the implementation of a filtered-x least mean square-based active noise control algorithm is presented. A commercial evaluation board accommodating a low-cost, fixed-point digital signal processor is used to simplify operation and provide programming access. The earbuds are obtained from a commercial product designed for noise cancellation. This study underscores the importance of addressing hardware constraints when implementing adaptive active noise cancellation, providing valuable insights for real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.