Abstract
Lomax, M, Mayger, B, Saynor, ZL, Vine, C, and Massey, HC. Practical considerations for assessing pulmonary gas exchange and ventilation during flume swimming using the MetaSwim metabolic cart. J Strength Cond Res 33(7): 1941-1953, 2019-The MetaSwim (MS) metabolic cart can assess pulmonary gas exchange and ventilation in aquatic environments. The aims of this study were: (a) to determine the agreement between minute ventilation (VE), pulmonary oxygen uptake (VO2), and carbon dioxide output (VCO2) using the MS and Douglas bag (DB) methods during flume swimming; and (b) to assess the repeatability of these and other MS-derived parameters. Sixteen trained swimmers completed a combined incremental and supramaximal verification cardiopulmonary swimming test to determine maximal VO2, 2 progressive intensity swimming tests during which MS and DB measurements were made (agreement protocol), and 3-4 constant-velocity submaximal swimming tests during which only the MS was used (repeatability protocol). Agreement was determined using limits of agreement (LoA), bias, random error, and 95% confidence intervals with systematic bias assessed using paired samples t-tests. Within-trial and between-trial repeatability were determined using the coefficient of variation (CV) and the repeatability coefficient (CR). Where data were heteroscedastic, LoA and CR were log-transformed, antilogged, and displayed as ratios. MetaSwim underestimated peak VO2 and VCO2 (≤0.39 L·min) and VE (9.08 L·min), whereas submaximal values varied between 2 and 5% for CV and ±1.09-1.22 for ratio CR. The test-retest CV during constant-velocity swimming for VE, tidal volume, breathing frequency, VO2, VCO2, and end-tidal pressures of O2 and CO2 was <9% (ratio CR of ±1.09-1.34). Thus, the MS and DB cannot be used interchangeably. Whether the MS is suitable for evaluating ventilatory and pulmonary responses in swimming will depend on the size of effect required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.