Abstract

In this report we have shown that the commercially available Co(2)(CO)(8) and Co(4)(CO)(12), and enyne--Co(2)(CO)(6) complexes, are sufficiently effective in catalyzing the Pauson--Khand reaction under one atmosphere of CO pressure. It was further demonstrated that the efficiencies of these cyclization protocols could be enhanced by the presence of cyclohexylamine. These procedures have also rendered more practical and highly convenient alternatives for the catalytic Pauson--Khand reaction. Most importantly, we have dispelled the common belief that Co(4)(CO)(12) is inactive in the Pauson--Khand reaction under one atmosphere of carbon monoxide. Of mechanistic importance is that these studies have also shown that the probable formation of Co(4)(CO)(12) is not necessarily a dead end pathway in the Co(2)(CO)(8)-catalyzed Pauson--Khand reaction. It is also of interest that substoichiometric amounts of Co(2)(CO)(8), in DME and in the presence of cyclohexylamine, are sufficient for the cyclocarbonylation of enynes under a nitrogen atmosphere. Our findings have provided more practical protocols for the Pauson-Khand reaction using catalytic amounts of cobalt carbonyl complexes and a better understanding of the influence of Lewis bases on their efficiency. These reports on the activity of Co(4)(CO)(12) are anticipated to develop into a convenient and practical alternative for Co(2)(CO)(8) catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.