Abstract
AbstractA cationic rhodium(I)/2,2′‐bis[bis(3,5‐di‐tert‐butyl‐4‐methoxyphenyl)phosphino]‐6,6′‐dimethoxy‐1,1′‐biphenyl (DTBM‐MeO‐BIPHEP) catalyst was highly efficient for the asymmetric catalytic Pauson–Khand reaction, especially for those substrates containing aryl group‐substituted alkynes. The formation of the products that were derived from a β‐hydride eliminated intermediate 5 was completely suppressed over a wide range of substrates. This reaction was a serious process competing reaction with the migratory CO insertion that led to the Pauson–Khand reaction product and often substantially ruined the chemical yield of the Pauson–Khand reaction. The advantages of this system were clearly demonstrated for previously troublesome substrates, N‐tosyl‐ (1b) and malonate‐tethered 1,6‐enynes (1c), that exhibited a higher enantioselectivity without a loss in the chemical yields. The obvious beneficial effects were attributed to the synergic effect of various factors, such as the electron density of the phosphorus of the ligand, the dihedral angles of the atropisomeric ligand, and the substitution on the phosphine aryl rings which play a crucial role in the stereochemical outcome of Rh‐catalyzed Pauson–Khand reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.