Abstract
The main problem in current energy management is the ability of practical application. To address the problem, this paper proposes a reinforcement learning (RL)-based energy management by combining Tubule Q-learning and Pontryagin’s Minimum Principle (PMP) algorithms for a plug-in hybrid electric bus (PHEB). The main innovation distinguished from the existing energy management strategies is that a dynamic SOC design zone plan method is proposed. It is characterized by two aspects: ① a series of fixed locations are defined in the city bus route and a linear SOC reference trajectory is re-planned at fixed locations; ② a triangle zone will be re-planned based on the linear SOC reference trajectory. Additionally, a one-dimensional state space is also designed to ensure the real-time control. The off-line trainings demonstrate that the agent of the RL-based energy management can be well trained and has good generalization performance. The results of hardware in loop simulation (HIL) demonstrate that the trained energy management has good real-time performance, and its fuel consumption can be decreased by 12.92%, compared to a rule-based control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.