Abstract

AbstractNanostructured‐alloy‐type anodes have received great interest for high‐performance lithium‐ion batteries (LIBs). However, these anodes experience huge volume fluctuations during repeated lithiation/delithiation and are easily pulverized and subsequently form aggregates. Herein, an efficient method to stabilize alloy‐type anodes by creating defects on the surface of the metal oxide support is proposed. As a demonstration, PPy‐encapsulated SnS2 nanosheets supported on defect‐rich TiO2 nanotubes were produced and investigated as an anode material for LIBs. Both experimental results and theoretical calculations demonstrate that defect‐rich TiO2 provides more chemical adhesions to SnS2 and discharge products, compared to defect‐poor TiO2, and then effectively stabilizes the electrode structure. As a result, the composite exhibits an unprecedented cycle stability. This work paves the way to designing durable and active nanostructured‐alloy‐type anodes on oxide supports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.