Abstract
Silicon (Si) has been recognized as a promising alternative to graphite anode materials for advanced lithium-ion batteries (LIBs) owing to its superior theoretical capacity and low discharge voltage. However, Si-based anodes undergo structural pulverization during cycling due to the large volume expansion (ca. 300-400%) and continuous formation of an unstable solid electrolyte interphase (SEI), resulting in fast capacity fading. To address this challenge, a series of different amounts of silicon nanoparticles (Si NPs)-encapsulated hollow porous N-doped/Co-incorporated carbon nanocubes (denoted as p-CoNC@SiX, where X = 50, 80, and 100) as anode materials for LIBs are reported in this paper. These hollow nanocubic materials were derived by facile annealing of different contents of Si NPs-encapsulated Zn/Co-bimetallic zeolitic imidazolate frameworks (ZIF@Si) as self-sacrificial templates. Owing to the advantages of well-defined hollow framework clusters and highly conductive hollow carbon frameworks, the hollow porous p-CoNC@SiX significantly improved the electronic conductivity and Li+ diffusion coefficient by an order of magnitude higher than that of Si NPs. The as-prepared p-CoNC@Si80 with 80 wt % Si NPs delivered a continuously increasing specific capacity of 1008 mAh g-1 at 500 mA g-1 over 500 cycles, excellent reversible capacity (∼1361 mAh g-1 at 0.1 A g-1), and superior rate capability (∼603 mAh g-1 at 3 A g-1) along with an unprecedented long-life cyclic stability of ∼1218 mAh g-1 at 1 A g-1 over 1000 cycles caused by low volume expansion (9.92%) and suppressed SEI side reactions. These findings provide new insights into the development of highly reversible Si-based anode materials for advanced LIBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have