Abstract

High mobility group box 1 (HMGB1) elevation after cerebral ischemia activates inflammatory pathways via receptors such as the receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) and leads to brain damage. Eicosapentaenoic acid (EPA), a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, attenuates postischemic inflammation and brain damage in male animals. However, postischemic HMGB1 signaling and the effects of EPA on ovariectomized (OVX(+)) rats remain unclear. We hypothesized that EPA attenuates brain damage in OVX(+) rats via the inhibition of HMGB1 signaling in a PPARγ-dependent manner. Seven-week-old female Sprague-Dawley rats were divided into 3 groups; nonovariectomized (OVX(-)) rats and EPA-treated and EPA-untreated OVX(+) rats before cerebral ischemia induction. Another set of EPA-treated OVX(+) rats was injected with the PPARγ inhibitor GW9662. OVX(+) decreased the messenger RNA level of PPARγ and increased that of HMGB1, RAGE, TLR9, and tumor necrosis factor alpha (TNFα) in parallel with ischemic brain damage. EPA restored the PPARγ expression, downregulated the HMGB1 signal-related molecules, and attenuated the ischemic brain damage. Neither OVX(+) nor EPA affected the expression of TLR2 or TLR4. Interestingly, GW9662 partially abrogated the EPA-induced neuroprotection and the downregulation of RAGE and TLR9. In contrast, GW9662 did not affect HMGB1 or TNFα. These results suggest that EPA exerts PPARγ-dependent and PPARγ-independent effects on postischemic HMGB1/TLR9 pathway. Thecortical infarct volume exacerbated by OVX(+) is associated with the upregulation of the HMGB1/TLR9 pathway. Suppression of this pathway may help to limitischemic brain damage in postmenopausal women.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.