Abstract

Viruses of the DNA tumor virus family share the ability to transform vertebrate cells through the action of virus-encoded tumor antigens that interfere with normal cell physiology. They accomplish this very efficiently by inhibiting endogenous tumor suppressor proteins that control cell proliferation and apoptosis. Simian virus 40 (SV40) encodes two oncoproteins, large tumor antigen, which directly inhibits the tumor suppressors p53 and Rb, and small tumor antigen (ST), which interferes with serine/threonine protein phosphatase 2A (PP2A). We have constructed a Drosophila model for SV40 ST expression and show that ST induces supernumerary centrosomes, an activity we also demonstrate in human cells. In early Drosophila embryos, ST also caused increased microtubule stability, chromosome segregation errors, defective assembly of actin into cleavage furrows, cleavage failure, a rise in cyclin E levels and embryonic lethality. Using ST mutants and genetic interaction experiments between ST and PP2A subunit mutations, we show that all of these phenotypes are dependent on ST's interaction with PP2A. These analyses demonstrate the validity and utility of Drosophila as a model for viral oncoprotein function in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.