Abstract

BackgroundThe human polyomavirus, JC virus (JCV) produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg) and three T′ proteins, but little is known about small tumor antigen (tAg) functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses.Methodology and FindingsWe investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A), and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector.ConclusionsJCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions.

Highlights

  • JC virus (JCV) belongs to the Polyomaviridae family of small double-stranded DNA tumor viruses that includes four other human polyomaviruses: BKV, WUV, KIV and MCV

  • JCV tumor antigen (tAg) Interacts with phosphatase 2A (PP2A) The ability of polyomaviruses to induce S phase progression of a host cell is critical to the establishment of a productive infection

  • To demonstrate that this interaction occurs in vivo, lysates of Rat2, mouse embryo fibroblast (MEF) and 3T3 cells expressing untagged JCV proteins were subjected to co-IP/Western blot (WB) analysis

Read more

Summary

Introduction

JC virus (JCV) belongs to the Polyomaviridae family of small double-stranded DNA tumor viruses that includes four other human polyomaviruses: BKV, WUV, KIV and MCV. These five viruses are distributed globally among the human population with seroprevalence ranging from 39% to 82% among healthy adult blood donors [1]. JCV produces five early proteins, the large tumor antigen (TAg), small tumor antigen (tAg), and three T9 proteins, which share overlapping N-terminal sequences and exhibit common and unique replication and transforming functions [7,8]. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call