Abstract

Anti-apoptotic activity of BCL-2 is mediated by phosphorylation at the endoplasmic reticulum (ER), but how this phosphorylation is regulated and the mechanism(s) by which it regulates apoptosis are unknown. We purified macromolecular complexes containing BCL-2 from ER membranes and found that BCL-2 co-purified with the main two subunits of the serine/threonine phosphatase, PP2A. The association of endogenous PP2A and BCL-2 at the ER was verified by co-immunoprecipitation and microcystin affinity purification. Knock down or pharmacological inhibition of PP2A caused degradation of phosphorylated BCL-2 and led to an overall reduction in BCL-2 levels. We found that this degradation was due to the action of the proteasome acting selectively at the ER. Conversely, overexpression of PP2A caused elevation in endogenous BCL-2. Most importantly, we found that PP2A knock down sensitized cells to several classes of death stimuli (including ER stress), but this effect was abolished in a genetic background featuring knock in of a non-phosphorylatable BCL-2 allele. These studies support the hypothesis that PP2A-mediated dephosphorylation of BCL-2 is required to protect BCL-2 from proteasome-dependent degradation, affecting resistance to ER stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.