Abstract
It is well known that if Г is a geodesic line of the tangent (sphere) bundle with Sasaki metric of a locally symmetric Riemannian manifold, then all geodesic curvatures of the projected curve λ=π 1463-01 Г are constant. In this paper, we consider the case of the tangent (sphere) bundle over real, complex, and quaternionic space forms and give a unified proof of the following property: All geodesic curvatures of the projected curve are zero beginning with k 3, k 6, and k 10 for the real, complex, and quaternionic space forms, respectively.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have